42 research outputs found

    Behaviour Profiling in Healthcare Applications Using the Internet of Things Technology

    Get PDF
    This position paper advocates applying the monitoring pogwer of IoT to build profiles of user behaviour using the large volumes of collected data. The desired system exploits sensor data mining approaches to profile user behaviour patterns in smart environments. Sensor data is mined to extract relationships of interest between environmental variables (context) and the user, building in this way behaviour profiles. The capability of applying knowledge to manipulate user’s environment is expected take monitoring beyond the simple alert-mode of operation to long term profiling of user’s behaviour. After a brief literature review to prove the suitability of IoT as a low-cost unsupervised profiling platform, we give the details of our proposal and the objectives that needs to be met before user behaviour profiling across inter-spaces is possible

    Unmanned Ground Vehicle for Data Collection in Wireless Sensor Networks: Mobility-aware Sink Selection

    Get PDF
    Several recent studies have demonstrated the benefits of using the Wireless Sensor Network (WSN) technology in large-scale monitoring applications, such as planetary exploration and battlefield surveillance. Sensor nodes generate continuous stream of data, which must be processed and delivered to end users in a timely manner. This is a very challenging task due to constraints in sensor node’s hardware resources. Mobile Unmanned Ground Vehicles (UGV) has been put forward as a solution to increase network lifetime and to improve system's Quality of Service (QoS). UGV are mobile devices that can move closer to data sources to reduce the bridging distance to the sink. They gather and process sensory data before they transmit it over a long-range communication technology. In large-scale monitored physical environments, the deployment of multiple-UGV is essential to deliver consistent QoS across different parts of the network. However, data sink mobility causes intermittent connectivity and high re-connection overhead, which may introduce considerable data delivery delay. Consequently, frequent network reconfigurations in multiple data sink networks must be managed in an effective way. In this paper, we contribute an algorithm to allow nodes to choose between multiple available UGVs, with the primary objective of reducing the network reconfiguration and signalling overhead. This is realised by assigning each node to the mobile sink that offers the longest connectivity time. The proposed algorithm takes into account the UGV’s mobility parameters, including its movement direction and velocity, to achieve longer connectivity period. Experimental results show that the proposed algorithm can reduce end-to-end delay and improve packet delivery ratio, while maintaining low sink discovery and handover overhead. When compared to its best rivals in the literature, the proposed approach improves the packet delivery ratio by up to 22%, end-to-end delay by up to 28%, energy consumption by up to 58%, and doubles the network lifetime

    Dynamic Clustering and Management of Mobile Wireless Sensor Networks

    Get PDF
    In Wireless Sensor Networks (WSNs), routing data towards the sink leads to unbalanced energy consumption among intermediate nodes resulting in high data loss rate. The use of multiple Mobile Data Collectors (MDCs) has been proposed in the literature to mitigate such problems. MDCs help to achieve uniform energy-consumption across the network, fill coverage gaps, and reduce end-to-end communication delays, amongst others. However, mechanisms to support MDCs such as location advertisement and route maintenance introduce significant overhead in terms of energy consumption and packet delays. In this paper, we propose a self-organizing and adaptive Dynamic Clustering (DCMDC) solution to maintain MDC-relay networks. This solution is based on dividing the network into well-delimited clusters called Service Zones (SZs). Localizing mobility management traffic to a SZ reduces signaling overhead, route setup delay and bandwidth utilization. Network clustering also helps to achieve scalability and load balancing. Smaller network clusters make buffer overflows and energy depletion less of a problem. These performance gains are expected to support achieving higher information completeness and availability as well as maximizing the network lifetime. Moreover, maintaining continuous connectivity between the MDC and sensor nodes increases information availability and validity. Performance experiments show that DCMDC outperforms its rival in the literature. Besides the improved quality of information, the proposed approach improves the packet delivery ratio by up to 10%, end-to-end delay by up to 15%, energy consumption by up to 53%, energy balancing by up to 51%, and prolongs the network lifetime by up to 53%

    A Wireless Sensor Network Border Monitoring System: Deployment Issues and Routing Protocols

    Get PDF
    External border surveillance is critical to the security of every state and the challenges it poses are changing and likely to intensify. Wireless Sensor Networks (WSN) are a low cost technology that provide an intelligence-led solution to effective continuous monitoring of large, busy and complex landscapes. The linear network topology resulting from the structure of the monitored area raises challenges that have not been adequately addressed in the literature to date. In this paper, we identify an appropriate metric to measure the quality of WSN border crossing detection. Furthermore, we propose a method to calculate the required number of sensor nodes to deploy in order to achieve a specified level of coverage according to the chosen metric in a given belt region, while maintaining radio connectivity within the network. Then, we contribute a novel cross layer routing protocol, called Levels Division Graph (LDG), designed specifically to address the communication needs and link reliability for topologically linear WSN applications. The performance of the proposed protocol is extensively evaluated in simulations using realistic conditions and parameters. LDG simulation results show significant performance gains when compared to its best rival in the literature, Dynamic Source Routing (DSR). Compared to DSR, LDG improves the average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining comparable performance in terms of normalized routing load and energy consumption

    The effect of cycling hypoxia on MCF-7 cancer stem cells and the impact of their microenvironment on angiogenesis using human umbilical vein endothelial cells (HUVECs) as a model

    Get PDF
    Background Breast cancer is the most common type of cancer among females. Hypoxia mediates cancer hallmarks and results from reduced oxygen level due to irregularities in tumor vascularization or when the tumor size prevents oxygen diffusion and triggers angiogenesis to compensate for low oxygen. Cancer stem cells (CSCs) are a rare subpopulation, able to self-renew and to give rise to tumor-initiating cells. It is proposed that CSCs’ secretions help to recruit endothelial cells via angiogenic factors to establish tumor vascularization. In the tumor microenvironment, the effect of hypoxia on CSCs and the impact of their secretions on triggering angiogenesis and tumor vascularization remain questionable. In this study, three-dimensional (3D) CSCs derived from MCF-7 were directly exposed to repetitive long-term cycles of hypoxia to assess its effect on CSCs and then to evaluate the role of the hypoxic CSCs’ (CSCsHYP) secretions in angiogenesis using (HUVECs) as a model for tumor neovascularization response. Methods CSCs derived from MCF-7 cell-line were expanded under repetitive, strictly optimized, long-term/continuous and intermittent hypoxic shots for almost four months to assess hypoxic effect on CSCs, sorted based on CD44+/CD24− biomarkers. Hypoxic phenotype of CSCsHYP was evaluated by assessing the acquired chemoresistance using MTT assay and elevated stemness properties were assessed by flow cytometry. To evaluate the effect of the secretions from CSCsHYP on angiogenesis, HUVECs were exposed to CSCsHYP conditioned-medium (CdM)—in which CSCs had been previously grown—to mimic the tumor microenvironment and to assess the effect of the secretions from CSCsHYP on the HUVECs’ capability of tube formation, migration and wound healing. Additionally, co-culture of CSCsHYP with HUVECs was performed. Results CSCsHYP acquired higher chemoresistance, increased stemness properties and obtained greater propagation, migration, and wound healing capacities, when compared to CSCs in normoxic condition (CSCsNOR). HUVECs’ tube formation and migration abilities were mediated by hypoxic (CSCs) conditioned media (CdM). Discussion This study demonstrates that chemoresistant and migrational properties of CSCs are enhanced under hypoxia to a certain extent. The microenvironment of CSCsHYP contributes to tumor angiogenesis and migration. Hypoxia is a key player in tumor angiogenesis mediated by CSCs

    A survey on internet of things enabled smart campus applications

    Get PDF
    The fictional future home, workspace or city, as predicted by science TV shows of the 1960s, is now a reality. Modern microelectronics and communication technologies offer the type of smart living that looked practically inconceivable just a few decades ago. The Internet of Things (IoT) is one of the main drivers of the future smart spaces. It enables new operational technologies and offers vital financial and environmental benefits. With IoT, spaces are evolving from being just 'smart' to become intelligent and connected. This survey paper focuses on how to leverage IoT technologies to build a modular approach to smart campuses. The paper identifies the key benefits and motivation behind the development of IoT-enabled campus. Then, it provides a comprehensive view of general types of smart campus applications. Finally, we consider the vital design challenges that should be met to realise a smart campus

    In Vitro Anticancer Properties of Novel Bis-Triazoles

    Get PDF
    Here, we describe the anticancer activity of our novel bis-triazoles MS47 and MS49, developed previously as G-quadruplex stabilizers, focusing specifically upon the human melanoma MDA-MB-435 cell line. At the National Cancer Institute (NCI), USA, bis-triazole MS47 (NCS 778438) was evaluated against a panel of sixty human cancer cell lines, and showed selective, distinct multi-log differential patterns of activity, with GI50 and LC50 values in the sub-micromolar range against human cancer cells. MS47 showed highly selective cytotoxicity towards human melanoma, ovarian, CNS and colon cancer cell lines; in contrast, the leukemia cell lines interestingly showed resistance to MS47 cytotoxic activity. Further studies revealed the potent cell growth inhibiting properties of MS47 and MS49 against the human melanoma MDA-MB-435 cell line, as verified by MTT assays; both ligands were more potent against cancer cells than MRC-5 fetal lung fibroblasts (SI > 9). Melanoma colony formation was significantly suppressed by MS47 and MS49, and time- and dose-dependent apoptosis induction was also observed. Furthermore, MS47 significantly arrested melanoma cells at the G0/G1 cell cycle phase. While the expression levels of Hsp90 protein in melanoma cells were significantly decreased by MS49, corroborating its binding to the G4-DNA promoter of the Hsp90 gene. Both ligands failed to induce senescence in the human melanoma cells after 72 h of treatment, corroborating their weak stabilization of the telomeric G4-DNA

    On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor network

    Get PDF
    In a wireless sensor network (WSN), sensor nodes collect data from the environment and transfer this data to an end user through multi-hop communication. This results in high energy dissipation of the devices. Thus, balancing of energy consumption is a major concern in such kind of network. Appropriate cluster head (CH) selection may provide to be an efficient way to reduce the energy dissipation and prolonging the network lifetime in WSN. This paper has adopted the concept of fuzzy if-then rules to choose the cluster head based on certain fuzzy descriptors. To optimise the fuzzy membership functions, Particle Swarm Optimisation (PSO) has been used to improve their ranges. Moreover, recent study has confirmed that the introduction of a mobile collector in a network which collects data through short-range communications also aids in high energy conservation. In this work, the network is divided into clusters and a mobile collector starts from the static sink or base station and moves through each of these clusters and collect data from the chosen cluster heads in a single-hop fashion. Mobility based on Ant-Colony Optimisation (ACO) has already proven to be an efficient method which is utilised in this work. Additionally, instead of performing clustering in every round, CH is selected on demand. The performance of the proposed algorithm has been compared with some existing clustering algorithms. Simulation results show that the proposed protocol is more energy-efficient and provides better packet delivery ratio as compared to the existing protocols for data collection obtained through Matlab Simulations

    Language barriers to effective communication

    No full text
    Globalization and communication technology are bringing the world closer together in a global village, including language barriers. The things that prevent us from understanding each other's constitute a common challenge to individuals, groups, international companies, governments, nations, and the whole world. This qualitative study aimed at exploring the factors that cause language barriers, their types, and their impact on effective communication and our life as well as ways to make people aware of the importance of overcoming them. The study concluded that language or semantic barriers arise from different subjects such as meanings and uses of words, symbols, images, gestures, languages and dialects.La globalizaciĂłn y la tecnologĂ­a de la comunicaciĂłn estĂĄn uniendo al mundo en una aldea global, incluyendo barreras del idioma. Las cosas que nos impiden entendernos constituyen un desafĂ­o comĂșn para las personas, los grupos, las compañías internacionales, los gobiernos, las naciones y el mundo entero. Este estudio cualitativo tuvo como objetivo explorar los factores que causan las barreras del idioma, sus tipos y su impacto en la comunicaciĂłn efectiva y nuestra vida, asĂ­ como las formas de sensibilizar a las personas sobre la importancia de superarlas. El estudio concluyĂł que el lenguaje o las barreras semĂĄnticas surgen de diferentes temas, como significados y usos de palabras, sĂ­mbolos, imĂĄgenes, gestos, idiomas y dialectos
    corecore